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ABSTRACT 
 

In the present study, the multivariate adaptive regression splines (MARS) technique is 

employed to estimate the drying shrinkage of concrete. To this purpose, a very big database 

(RILEM Data Bank) from different experimental studies is used. Several effective 

parameters such as the age of onset of shrinkage measurement, age at start of drying, the 

ratio of the volume of the sample on its drying surface, relative humidity, cement content, 

the ratio between water and cement contents, the ratio of sand on total aggregate, average 

compressive strength at 28 days, and modulus of elasticity at 28 days are included in the 

developing process of MARS model. The performance of MARS model is compared with 

several codes of practice including ACI, B3, CEB MC90-99, and GL2000. The results 

confirmed the superior capability of developed MARS model over existing design codes. 

Furthermore, the robustness of the developed model is also verified through sensitivity and 

parametric analyses. 
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1. INTRODUCTION 
 

Mechanical properties of materials stand as one of the most important indicators for 

evaluating the strength and serviceability of reinforced concrete structures. Among these 
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properties, long-term properties of concrete that are mainly affected by the secondary 

influences of creep and shrinkage are of great importance to a structural engineer. 

Appropriate predictions of creep and shrinkage are very crucial tasks to assess the risk of 

concrete cracking, and deflection due to stripping-reshoring [1]. Therefore, presenting and 

developing a robust predictive model for both creep and shrinkage seem to be necessary. 

There are several types of shrinkage distinguished depending on the cause of moisture 

loss. In this study, the drying shrinkage, which is defined as the removal of observed water 

from the hydrated cement paste when it is exposed to the environment, is investigated. 

Drying shrinkage problem is very complex phenomena and several parameters involved in 

this problem. The temperature and availability of water during curing, the environmental 

humidity and temperature after curing, the composition of the concrete, and the mechanical 

properties of the aggregates are the main parameters effect on shrinkage. Developing a user-

friendly relationship between the drying shrinkage and parameters involved in this problem 

is still controversial in civil engineering.  

Various codes of practice like ACI 209R-92 [1], B3 by Bazant-Baweja [2], CEB MC90-

99 [3], and GL2000 [4] are presented to predict shrinkage in concrete. The ACI model is 

only applicable to normal weight and all the lightweight concretes under the standard 

conditions. The CEB-FIP model is also restricted to ordinary structural concretes with 28 

days mean cylinder compressive strength varying from 12 to 80 MPa, mean relative 

humidity 40%-100% and mean temperature 5-30 ºC. The B3 model, which is an improved 

version of the earlier models namely BP model [5-8] and BP-KX model [9, 10], is restricted 

to the Portland cement concretes with a 28-days mean cylinder compressive strength varying 

from 17 to 70 MPa, W/C ratio 0.30-0.85, a/c ratio 2.5-13.5 and cement content 160-720 

kg/m3. The GL2000 model, which is a modified form of the earlier GZ model by Gardner 

and Zhao [4], is also only applicable to concrete with characteristic strength less than 70 

MPa and W/C ratio between 0.40 and 0.60. Goel et al. [11] evaluated the performances of 

the mentioned models based on RILEM (International Union of Laboratories and Experts in 

Construction Materials) database. Results indicated that the ACI, the B3, the CEB-FIP, and 

the GL2000 models underestimate the experimental shrinkage for all the concrete grades and 

there are significant scatters between predicted values and observed ones. In fact, the 

variability of shrinkage test measurements prevents models from closely matching 

experimental data [1]. 

In recent years, soft computing approaches have been introduced as reliable methods for 

developing predictive models in civil engineering problems (e.g. [12-18]). Artificial neural 

networks (ANNs) are known as the most popular soft computing approaches. In this regard, 

Bal and Buyle-Bodin [19] developed a multi-layer perceptron neural networks to estimate 

the drying shrinkage of concrete. The results of their study confirm the superior predictive 

ability of developed ANN model in comparison with the mentioned design codes in the 

previous paragraph. However, ANN model suffers from several drawbacks. For instance, the 

selection of structures of such networks is completely random and several models should be 

performed to obtain an appropriate configuration. Furthermore, ANNs do not present a 

definite function to estimate the response values based on input variables. 

The main purpose of this study is to use the multivariate adaptive regression splines 

(MARS) algorithms for improving the predictive capability in the estimation of drying 

shrinkage in concrete. The MARS algorithm is a high-precision technique which was firstly 
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introduced by Friedman [20]. The main advantage of MARS model in comparison with 

ANN model is that the relationship between input and output variables is completely known 

and the user can easily estimate the response variable for a set of input variables. To develop 

a new predictive model, a comprehensive big database extracted from the RIELM databank 

[21] is applied. The results of the developed model are compared with different codes of 

practice based on statistical error parameters. Furthermore, the effects of different predictive 

variables are investigated through sensitivity and parametric analyses. 

The remaining sections of the paper are organized as follows. In Section 2, the MARS 

algorithms are outlined. Section 3 describes the dataset used and also the process of 

modeling. The performance of proposed models, the parametric and sensitivity analyses are 

presented in Section 4. At the end, the paper is concluded in Section 5. 

 

 

2. METHODOLOGY 
 

There are two major categories for model trees: (a) Multiple Adaptive Regression spline 

(MARS) and (b) M5 model tree methods. In this research, MARS methods have been used 

for predicting drying shrinkage. For practical problems with the numeric variable response, 

the Regression Model Tree is usually applied because it has a numeric value rather than a 

class label linked to each leaf or classification. Model trees are quite similar to regression 

trees but it connects leaves with multivariate linear models. For problems dealing with 

continuous classes of variables, model tree technique has been successfully applied. The 

model tree offers a formational depiction of the data and piecewise linear fit to members of 

each class is calculated. In a model tree, there is a linear function assigned to each leaf, and 

no discretization of class labels is needed while it keeps conventional tree structure. Model 

trees are more accurate than regression trees while they are much smaller in size. 

 

2.1 Overview of multivariate adaptive regression splines (MARS) 

MARS is a novel approach in the field of data mining that models the nonlinear relationship 

between inputs and output variables using a series of piecewise linear or cubic segments 

(splines). These splines divide the space of input parameters into various subspaces and the 

algorithm fits a spline function in each subspace, which is known as basis functions (BFs). 

The basis function and its slope in each subspace can be changed from one subspace to the 

neighbor subspace. The end points of each segment are called knots. In other words, a knot 

determines the end of one region of data and the beginning of another. Unlike the well-

known parametric linear regression analysis, MARS provides greater flexibility to explore 

nonlinear relations between a response variable and input variables. Furthermore, MARS 

also searches all possible interactions between variables by checking all degrees of 

interactions. The algorithm considers all functional forms and interactions between input 

variables, and therefore, it can effectively track the complex structures existing in data 

points and hidden relationships in a high-dimensional dataset. The general form of MARS 

model is defined as follows [20]: 
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where f ̃(x) is the predicted response, β0 and βm are parameters which are estimated to yield 

the best data fit and m is the number of BFs included into the model. The basis function in 

MARS model can be either one univariable spline function, or a product of two or more 

spline functions for different predictor variables. The spline BF, λm(x), can be specified as: 
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where km is the number of knots, skm takes either 1 or -1 and indicates the right/left regions of 

the associated step function, v(k,m) is the label of the predictor variable and tk,m is the knot 

location. 

MARS produces the BFs based on a stepwise procedure in whole searching space. The 

locations of knots are determined according to an adaptive regression algorithm. An optimal 

MARS is developed through a two-stage forward and backward procedure. In the forward 

stage, MARS over-fits data by considering a great number of BFs. In the backward, to avoid 

overfitting, redundant BFs are deleted from equation (1). MARS adopts Generalized Cross-

Validation (GCV) criterion to remove the redundant BFs. The expression of GCV is as 

follow [20]: 
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in which N is the number of data points, and C(B) is a complexity penalty that increases with 

the number of BFs in the model, and it is defined as: 

 

(B) (B 1) dBC     (4) 

 

where d is a penalty for each BF included into the model and B is a number of BFs. 

 

 

3. DEVELOPMENT OF MARS MODEL 
 

In this study, the MARS algorithm was developed to predict the drying shrinkage using the 

following steps. 

 

3.1 Model inputs and outputs 

Nine variables were presented to the MARS as model inputs including the age of onset of 
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shrinkage measurement (t), age at start of drying (tc), the ratio of the volume of the sample 

on its drying surface (V/S), relative humidity (RH), cement content (C), the ratio of water 

content and cement content (W/C), the ratio of sand on total aggregate (a/c), average 

compressive strength at 28 days (fcm28), and modulus of elasticity at 28 days (Ecm28). The 

single model output is the drying shrinkage (S). The histograms of input and output variables 

are presented in Fig. 1. As shown, the database used covers a wide range of cement content, 

W/C, and fcm28. It should be noted that the developed model can be more reliable in ranges 

which data points are more concentrated. 

 

 

Figure 1. Histograms of input and output variables 

 

3.2 Data division and Pre-processing 

The data used to calibrate and validate the MARS model were obtained from RILEM (the 

International Union of Laboratories and Experts in Construction Materials) database, 

including shrinkage tests carried out in various laboratories. To develop a new model using 

MARS algorithm, the available data were randomly divided into training and testing subsets. 

The training data were taken for the learning procedure of the algorithm. The testing datasets 

were used to specify the generalization capability of the models to a new data they did not 

train with. In other words, the testing data were employed to measure the performance of the 

models obtained by MARS algorithm when applied to a dataset which played no role in 

building the models. The statistical parameters of the considered effective variables for 

training and testing subsets are presented in Table 1, which include the mean, standard 

deviation, minimum, maximum and range. From this table, it can be seen that the ranges of 

input parameters for both training and testing stages are notably wide. Therefore, it can be 

expected that the derived models would potentially provide better predictions for the cases, 

especially, where the densities of data points are higher. Out of the 2977 data, 2382 data 

vectors (80%) were taken for the training process. The remaining 595 data (20%) were used 

for the testing of the models. 
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Table 1: The statistical parameters of the input variables for training and testing datasets 

Parameter Subsets Min Max Mean Std. 

W/C 
Training 0.25 0.86 0.47 0.16 

Testing 0.25 0.86 0.48 0.16 

a/c 
Training 2.79 6.48 4.28 0.81 

Testing 2.79 6.48 4.27 0.80 

fcm28 
Training 17 111.3 54.84 27.05 

Testing 17 111.3 52.41 26.35 

Ecm28 
Training 19276.99 49943.14 33939.32 8790.09 

Testing 19276.99 49943.14 33173.6 8631.21 

RH 
Training 40 65 58.59 5.03 

Testing 40 65 58.42 5.15 

V/S 
Training 16 30 19.88 2.64 

Testing 16 30 19.67 2.56 

tc 
Training 0.5 14 7.72 5.69 

Testing 0.5 14 8.07 5.69 

∆t 
Training 0.03 11056.6 785.65 1739.89 

Testing 0.06 10882.1 786.23 1718.55 

C Training 267 583 411.6 92.40 

 Testing 267 583 411.83 92.43 

 

In the knowledge discovery approaches such as ANN, before data mining itself, data pre-

processing plays a crucial role. The normalization of the data is one of the first steps in data 

mining approaches. This step is very important when dealing with parameters of different 

units and scales. Therefore, all parameters considered for estimating shrinkage are 

normalized between 0 and 1 to have the same scale for a fair comparison between them. 

 

3.3 Developed model 

After the data division step, the training dataset is presented to the MARS algorithm. The 

MARS model provides a predictive model as the general form of Eq. (5) for estimation of 

drying shrinkage. The extended form of MARS model is presented in Table 2. According to 

this table, the developed model is consists of 59 basis functions. The developed MARS 

model captures complex relationships between input and output variables without an 

additional effort to verify a priori assumption about the relationship between the set of input 

variables and output response variable. This feature of MARS model can be more practical 

as the dimension of the problem increases. 
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Table 2: The list of basis functions and their equations 

Bf no. Equation  Bf no. Equation 

BF1 max(0, ∆t -0.022)  BF31 BF3 * max(0, 0.29 - V/S) 

BF2 max(0, 0.022 -∆t)  BF32 BF13 * max(0, C -0.74) 

BF3 max(0, W/C -0.049)  BF33 BF13 * max(0, 0.74 - C) 

BF4 max(0, 0.049 - W/C)  BF34 BF10 * max(0, Ecm28 -0.3) 

BF5 BF3 * max(0, Ecm28-0.0021)  BF35 BF10 * max(0, 0.3 - Ecm28) 

BF6 BF3 * max(0, 0.0021- Ecm28)  BF36 BF34 * max(0, 0.42 - fcm28) 

BF7 BF3 * max(0, ∆t -0.0023)  BF37 max(0, 0.0015 -∆t) * max(0, a/c -0.035) 

BF8 BF3 * max(0, 0.0023 -∆t)  BF38 max(0, 0.0015 -∆t) * max(0, 0.035 - a/c) 

BF9 max(0, tc -0.19)  BF39 BF23 * max(0, V/S -0.36) 

BF10 max(0, 0.19 - tc)  BF40 BF14 * max(0, tc -0.037) 

BF11 BF2 * max(0, a/c -0.068)  BF41 BF16 * max(0, 0.24 -∆t) 

BF12 BF2 * max(0, 0.068 - a/c)  BF42 BF15 * max(0, 0.26 -∆t) 

BF13 BF3 * max(0, fcm28 -0.12) 
 

BF43 
max(0, 0.022 -∆t) * max(0, tc -0.037) * max(0, a/c -

0.41) 

BF14 BF5 * max(0, fcm28-0.064) 
 

BF44 
max(0, 0.022 -∆t) * max(0, tc -0.037) * max(0, 0.41 - 

a/c) 

BF15 BF5 * max(0, 0.064 - fcm28)  BF45 BF25 * max(0, 0.12 -∆t) 

BF16 BF9 * max(0, C -0.44)  BF46 BF28 * max(0, C -0.38) 

BF17 
max(0, W/C -0.049) * max(0, 0.12 -fcm28) 

* max(0, Ecm28 -0.062) 

 
BF47 

max(0, ∆t -0.0015) * max(0, RH -0.2) * max(0, 0.38 - 

C) * max(0, 0.17 - Ecm28) 

BF18 
max(0, W/C -0.049) * max(0, 0.12 - 

fcm28) * max(0, 0.062 - Ecm28) 

 
BF48 max(0, ∆t -0.00047) 

BF19 BF9 * max(0, Ecm28-0.21)  BF49 BF48 * max(0, 0.4 - RH) 

BF20 BF9 * max(0, 0.21- Ecm28)  BF50 BF27 * max(0, RH -0.4) 

BF21 BF9 * max(0, 0.0064 -∆t) 
 

BF51 
max(0, W/C -0.049) * max(0, 0.12 - fcm28) * max(0, ∆t -

0.55) 

BF22 BF2 * max(0, 0.037 - tc) 
 

BF52 
max(0, W/C -0.049) * max(0, 0.12 - fcm28 * max(0, 0.55 

-∆t) 

BF23 BF14 * max(0, 0.96 - C)  BF53 BF7 * max(0, 0.22 - Ecm28) 

BF24 BF19 * max(0, fcm28 -0.15)  BF54 max(0, 0.21 - fcm28) 

BF25 BF19 * max(0, 0.15 - fcm28)  BF55 BF37 * max(0, 0.0021 - Ecm28) 

BF26 
max(0, tc -0.19) * max(0, 0.44 - C) * 

max(0, 0.16 - fcm28) 

 
BF56 BF32 * max(0, Ecm28 -0.78) 

BF27 max(0, x8 -0.0015)  BF57 BF46 * max(0, tc -0.037) 

BF28 BF27 * max(0, RH -0.2)  BF58 BF46 * max(0, 0.037 - tc) 

BF29 max(0, fcm28 -0.2)  BF59 BF28 * max(0, 0.13 - W/C) 

BF30 BF3 * max(0, V/S -0.29)    
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To analytically evaluate the performances of the developed models, the following 

statistical error parameters were applied: BIAS, root mean square error (RMSE), correlation 

coefficient (R) and coefficient of determination (R2). 
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where Oi is the measured value, Pi stands for prediction values, N is the number of data 

points, Om is the mean value for observation, and Pm is the mean value of prediction. 

 

 

4. RESULTS AND DISCUSSIONS 
 

The performance of MARS model in the training and testing sets are illustrated in Fig. 2, 

which presents the scatter between measured and predicted drying shrinkage around the 

optimal line of equality. As shown, there is a little scatter around the optimal line between 

predicted and measured values of drying shrinkage in both training and testing sets. The 

similar performances of the MARS model on the training and testing data indicate that they 

have both good predictive ability and generalization performances. The MARS model 

performance is further confirmed analytically in Table 3, which contains four different 

performance measures including the coefficient of correlation, R, the coefficient of 

determination (or efficiency), R2, root mean square error, RMSE, and BIAS. Smith [22] 

stated that if the correlation coefficient is more than 0.8, there is a strong correlation 

between measured and predicted values. However, R sometimes may not necessarily 

indicate better performance due to the tendency of the model to deviate toward higher or 

lower values, especially when the data range is very wide and most of the data are 

distributed around their mean. Consequently, R2 can be used as a more reliable indicator for 

measuring the model performance. R2 demonstrates a degree of similarity between predicted 

and measured values, with R2 values close to 1 indicating that the predicted and measured 

values are very similar. Low BIAS and RMSE values indicate high confidence in the 

developed model for prediction values. The analytical performance measures of the MARS 

file:///D:/Civil%20ENG/MYSELF/Work%20to%20Paper/Mahmoud%20Ziabari/2017.04.04-Shrinkage/Paper-Shrinkage%20(Recovered).docx%23_ENREF_22
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model in Table 3 demonstrate that the model performs well in both training and testing sets 

and the performance of MARS model for training set is consistent with testing sets. 

 

  

(a) (b) 
Figure 2. Comparison between measured and predicted values of drying shrinkage (a) Training, 

(b) Testing. 

 
Table 3: The performances of developed MARS model for training and testing datasets. 

Subsets BIAS RMSE R R2 

Training 1.53×10-5 37.59 0.9931 0.9862 

Testing 0.029 41.48 0.9919 0.9837 

 

The performance of MARS model is also compared with several codes of practice 

including ACI [1], B3 [23], CEB MC90-99 [3], and GL2000 [4]. In order to evaluate the 

capabilities of MARS model, the BIAS, RMSE, R, R2 statistical error measures were used 

[24]. The prediction performances of different models for entire database are presented in 

Table 4. For more visualization, Fig. 3 illustrates the histogram plots of the ratio of predicted 

drying shrinkage to experimentally measured values for the whole database. It can be 

concluded from Fig. 3 and Table 4 that the MARS model has provided significantly better 

results than other models. 

 
Table 4: The comparison of MARS model with design codes 

Model R R2 

ACI model 0.7842 0.6149 

CEB model 0.9076 0.8238 

GL2000 model 0.9277 0.8606 

B3 model 0.9390 0.8818 

MARS (this study) 0.9928 0.9857 
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Figure 3. The histograms of the ratio between predicted and measured shrinkage for different 

models 

 

3.3 Model robustness via sensitivity analysis and parametric study 

One of the main advantages of the MARS model is its ability to determine whether a 

specific input parameter plays a crucial role in estimating output parameters or it only 

marginally improves the accuracy of the model [25]. Table 5 displays the analysis of 

variance (ANOVA) decomposition of the developed MARS model for estimating drying 

shrinkage. The first column lists the number of ANOVA function. The second column gives 

the standard deviation of corresponding ANOVA functions. This gives an indication of the 

relative contribution of each function to the overall model performance. The third column 

provides another indication of the importance of the corresponding ANOVA function, by 

listing the GCV score for a model including all basis functions compared to a model in 

ACI B3 

GL200 CEB 

MARS 
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which that particular ANOVA function is removed. This can be used to judge whether this 

ANOVA function makes an important contribution to the model performance, or whether it 

only slightly improves the global GCV score. The last column gives the particular predictor 

variables associated with ANOVA function [22]. This ability of MARS can be employed to 

determine the relative importance of input parameters which are involved in estimation of 

drying shrinkage. 

To more illustrate the sensitivity analysis based on GCV values, the results are 

schematically presented in Fig. 4. As shown, the contribution of W/C parameter in 

developing a predictive model based on MARS algorithm are more remarkable in 

comparison with other parameters. fcm28, Ecm28, t, tc, RH, C, V/S, and a/c are the other 

important parameters, respectively. 

 
Table 5: The results of the analysis of variance (ANOVA) for the developed MARS model 

Function 

number 
STD GCV Variables  

Function 

number 
STD GCV Variables 

1 4.098 48.752 1  17 0.012 0.001 1 7 8 

2 0.294 0.100 4  18 0.356 0.154 1 8 9 

3 0.185 0.164 6  19 0.049 0.004 2 6 8 

4 3.145 61.825 8  20 0.004 0.001 2 8 9 

5 8.897 129.906 1 4  21 0.369 0.182 3 4 6 

6 0.106 0.032 1 5  22 0.091 0.012 3 6 8 

7 0.069 0.006 1 8  23 0.285 0.097 3 7 8 

8 6.660 112.431 1 9  24 0.143 0.024 4 6 9 

9 0.057 0.007 2 8  25 1.774 4.498 1 3 4 9 

10 0.079 0.005 6 8  26 0.037 0.003 1 4 6 9 

11 0.057 0.005 6 8  27 0.026 0.002 1 4 8 9 

12 3.362 15.546 6 9  28 0.270 0.086 3 6 7 8 

13 3.133 13.531 7 8  29 0.007 0.001 3 7 8 9 

14 0.882 1.149 1 3 4  30 0.011 0.001 4 6 8 9 

15 0.543 0.374 1 4 8  31 0.100 0.014 1 3 4 5 9 

16 4.806 32.037 1 4 9      

 

 
Figure 4. The result of sensitivity analysis 
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To ensure that the results of the developed model are in line with the physical concept of 

shrinkage problem, a parametric study is done. The main aim of the parametric study is to 

quantify the effect of each input parameter when all the other are fixed at their mean values. 

For instances, the variations of the drying shrinkage with C, W/C, and RH parameters for 

different ages are shown in Fig. 5. As shown in Fig. 5(a), the drying shrinkage increases as 

the cement content increases. The similar behavior is also observed for W/C parameter (see 

Fig. 5(b)). Furthermore, the amount of shrinkage is also more at greater ages. In Fig. 5(c), 

the variations of drying shrinkage with RH parameter are also shown. It can be seen from 

this figure that the shrinkage at lower ages decreases when the relative humidity increases. 

On the contrary, the shrinkage first increases small and then decreases at higher ages. These 

results are also reported in previous studies (e.g. [19]) and confirm the robustness of the 

developed model. 

 

  

 

Figure 5. The results of parametric analysis 

 

 

5. CONCLUSION 
 

In the present study, a nonparametric and nonlinear approach namely the multivariate 

adaptive regression splines (MARS) is applied to predict the drying shrinkage of concrete. 
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humidity (RH), cement content (C), the ratio of water content and cement content (W/C), the 

ratio of sand on total aggregate (a/c), average compressive strength at 28 days (fcm28), and 

modulus of elasticity at 28 days (Ecm28) are considered as predictive parameters. The results 

of statistical error analysis indicate that the MARS model notably outperforms different 

codes of practice presented in the literature. The sensitivity analysis indicates that the W/C, 

fcm28, and Ecm28 are the main predictive parameters in the developed model. Furthermore, the 

results of parametric analysis verify the capability of the MARS model in capturing the 

physical trends between predictive variables and the drying shrinkage. In general, the results 

of parametric and sensitivity analyses confirm the robustness of the proposed MARS model 

for predicting the drying shrinkage. 
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